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1. Introduction

The dynamics of a set of coincident D-branes is an intriguing problem in string theory.

It involves a non-abelian version of Dirac-Born-Infeld theory as well as non-commutative

geometrical ideas. There have been many papers written on the topic from various points

of view, although a completely satisfactory theory has not emerged as yet. In this paper,

we follow up an approach developed in two previous papers [1, 2] in which we made use of

the idea that the Chan-Paton factors for open strings can be described mathematically by

boundary fermions living at the ends of the string [3 – 6]. In our first paper we looked at

what happens when one demands kappa-symmetry for an open superstring with boundary

fermions and found that it implies that the dynamics of the brane on which the string ends

is described by a generalised superembedding, where the super worldvolume of the brane is

extended by a set of additional odd coordinates corresponding to the boundary fermions.

There is an abelian gauge field on this space which gives rise to a non-abelian one when

expanded out in the additional fermi coordinates. The requirement of kappa-symmetry

leads to constraints on the superembedding and the gauge field strength which generalise

those for a single brane [7, 8] and which imply the equations of motion for the brane

system. In the second paper, we presented an action for a bosonic brane with additional

fermi variables and showed that it is invariant under diffeomorphisms of the extended

worldvolume and under gauge transformations of the target space RR potentials. We also

showed how one could derive the Myers action [9 – 11] by first going to the physical gauge,

quantising the fermions naively, thereby converting functions of fermions into matrices,

and by replacing the fermi integral with the symmetrised trace. The current paper can
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be thought of as a synthesis of the previous two in that here we discuss an action for

supersymmetric coincident branes, again in the approximation of classical additional fermi

variables. We write this action as a Bernstein-Leites integral [12] over the extension of the

bosonic worldvolume, M̂0. This formalism seems to be perfectly suited to this problem

and allows us to write down an action which is manifestly invariant under diffeomorphisms

of M̂0 and under symmetries of the target space, unlike our previous action for bosonic

branes. It is also straightforward to prove that it is kappa-symmetric. Indeed, the action

is a very natural generalisation of the usual Green-Schwarz action for a single D-brane and

gives a very nice a posteriori justification for the Myers action. A preliminary version of

the proof of kappa-symmetry given here, based on our old formalism, was given in [13].

The paper is organised as follows: in section 2 we review some results from the su-

perembedding formalism which we shall need for our proof of kappa-symmetry; in section 3

we present the Dirac-Born-Infeld and Wess-Zumino parts of the action as Bernstein-Leites

integrals and in section 4 we prove that the sum of these two terms is kappa-symmetric.

We summarise our results in section 5 and discuss how our formalism might be developed

further and how it relates to various other approaches in the literature.

2. The geometrical framework

As discussed in [1] the geometry of coincident superbranes, in the approximation of treating

the boundary fermions classically, is described by a generalised superembedding f̂ : M̂ →

M from the extended superworldvolume M̂ to the target superspace which we shall take

to be that of on-shell IIB supergravity in this paper. This is a generalisation of the usual

superembedding formalism for single branes. The Green-Schwarz action for the dynamics

of this system will be given as an integral over M̂0, where M0 (coordinates xm) is the body

of the super worldvolume M (coordinates zM = (xm, θµ)). The spaces M̂0 (coordinates

x bm = (xm, ξµ̇)) and M̂ (coordinates z
cM = (zM , ξµ̇)) are obtained from M0 and M by

adjoining a set of q additional fermionic variables ξµ̇ which arise from boundary fermions

on the string.1 The various worldvolume spaces are related as follows:

M → M̂

↑ ↑

M0 → M̂0

(2.1)

where horizontal arrows indicate extension with additional fermionic variables ξµ̇ repre-

senting the boundary fermions, and vertical arrows indicate addition of supersymmetry,

i.e., adding θµ. The corresponding diagram for the coordinates is

(zM ) = (xm, θµ) → (zM , ξµ̇) = (xm, θµ, ξµ̇)

↑ ↑

(xm) → (zM ) = (xm, ξµ̇)

(2.2)

1There is a slight change of notation compared to our previous papers; the boundary fermions are

denoted ξµ̇ instead of ηbµ. Hatted indices indicate standard ones extended by these fermions.
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All of the above spaces, as well as the target superspace, are equipped with preferred bases

in the tangent spaces which will be denoted by letters from the beginning of the alphabet;

thus the preferred basis forms on M̂ are E
bA = (Ea, Eα, Eα̇), while those of M are denoted

EA = (Ea, Eα). To avoid confusion we shall use small letters for the bases of M0 and M̂0;

thus the preferred basis forms of the latter space are denoted eba = (ea, eα̇).

The geometry of the tangent bundle of M̂ is chosen such that it splits invariantly into

three corresponding to the three types of indices. Thus the structure group has the usual

superspace type (spin group times internal symmetry group) in the (Ea, Eα) sector while

it is taken to be SO(q) in the Eα̇ sector, where q is the number of boundary fermions. We

introduce connections (Ω) and covariant derivatives (∇) and define the torsion (T ) and

curvature forms (R) in the usual way. In addition there is an abelian gauge field A with

corresponding field strength K defined by

K := dA − f̂∗B (2.3)

where B is the Neveu-Schwarz two-form potential on M . The geometry of M̂ is determined

by the superembedding. The derivative of f̂ is the superembedding matrix E bA
A defined by

E bA
A := E bA

cM∂cM
zMEM

A. (2.4)

where EM
A, EA

M denotes the supervielbein and its inverse. We shall use two real fermions

of the same chirality to describe the odd coordinates of M ; accordingly, the preferred basis

forms are written Eα = (Eα1, Eα2). We now impose the following constraints on the

superembedding matrix:

Eα
b = 0 Ea

b = ua
b

Eα
β1 = uα

β Eα
β2 = hα

γ′

uγ′
β

Ea
β1 = 0 Ea

β2 = ha
γ′

uγ′
β (2.5)

where uα
β is an element of Spin(1, 9) with corresponding Lorentz group element (ua

a, ua′
a).

In fact, the primed indices denote indices normal to M in M , but note that there are no

primed dotted indices. The primed spinor indices are no different to the unprimed ones as

far as representations of the spin group are concerned and there is no need to distinguish

them. The above constraints are the direct analogies of the abelian ones; the main one

is the first, Eα
a = 0, since the others correspond to choices. The field hα

β′

is related to

the field strength of the gauge field, while ha
γ′

is essentially the bosonic derivative on the

brane of the transverse fermions. In addition we choose

Eα̇
b = hα̇

c′uc′
b; Eα̇

β1 = 0; Eα̇
β2 = hα̇

γ′

uγ′
β . (2.6)

The fields hα̇
a′

and hα̇
α′

can be thought of as the derivatives of the transverse bosons

and fermions respectively with respect to the boundary fermion variables. There are also

constraints on the gauge field strength tensor K. These are:

KAB =

{
Kab := Fab

KαB = 0

Kα̇B = 0

K
α̇β̇

= δ
α̇β̇

(2.7)
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The first of equations (2.7) is a direct generalisation of the abelian gauge field constraint

for a single brane [14] while the others have the effect of excluding unphysical degrees of

freedom. The requirement that K
α̇β̇

be non-singular is necessary in order that the abelian

field strength should be equivalent to a non-abelian gauge-field (on M) when expanded in

powers of ξ. Equation (2.7) can be written more succinctly as

K = I + F , (2.8)

where

F :=
1

2
EbEaFab , (2.9)

and where I is the unit two-form in the dotted sector,

I :=
1

2
Eβ̇Eα̇δ

α̇β̇
. (2.10)

The details of the induced geometry on M̂ are determined from the torsion equation,

2∇[ bA
E bB]

C + T bA bB

bCE bC
C = (−1)(

bB+B) bAE bB
BE bA

ATAB
C , (2.11)

and from the Bianchi identity for K,

3∇[ bA
K bB bC] + 3T[ bA bB

bDK| bD| bC] = −H bA bB bC
(2.12)

:= −(−1)(
bB+B) bA(−1)(

bC+C)( bA+ bB)E bC
CE bB

BE bA
AHABC .

In (2.12) the vertical bars indicate that the enclosed index is excluded from the graded

antisymmetrisation.

In order to solve these equations we need to specify the constraints on the IIB target

space geometry [15]. In the string frame we may take

T a = −
i

2
EβjEαiδij(γ

a)αβ

H = −
i

2
EcEβjEαi(σ3)ij(γc)αβ +

1

3!
EcEbEaHabc . (2.13)

Here i = 1, 2 is a Spin(2) index and σ3 is the third Pauli matrix. There are other

constraints which we shall not need, although, as shown in [16], the equations of motion of

IIB supergravity follow from the standard constraint on the dimension zero torsion.

In order to discuss the Wess-Zumino term in the action we shall also need the RR field

strengths, G(2n+1), n = 1, . . . 5, which are given by [17, 18]

G(2n+1) = ie−φEβ2Eα1(γ(2n−1))αβ − e−φ
(
Eα1(γ(2n)∇2φ)α − (−1)nEα2(γ(2n)∇1φ)α

)

+
1

(2n + 1)!
Ea2n+1 . . . Ea1Ga1...a2n+1

, (2.14)

where

γ(r) :=
1

r!
Ear . . . Ea1γa1...ar

. (2.15)
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2.1 The field hα
β′

Using the constraints Kα̇B = K
α bB

= 0 in the (αβĈ) component of the K Bianchi identity

(2.12) we find

Tαβ
bDK bD bC

= −H
αβ bC

. (2.16)

Using the form of the generalised superembedding matrix (2.5) in the (αβ)c-component

of the torsion equation, (2.11), we have

Tαβ
cEc

c + Tαβ
γ̇Eγ̇

c = −i(γc + hγchT)αβ . (2.17)

The projections along the wordvolume and normal directions respectively give

Tαβ
a = −i(γa + hγahT)αβ (2.18)

and

Tαβ
γ̇hγ̇

a′

= −i(γa′

+ hγa′

hT)αβ . (2.19)

These two equations, together with (2.16), give

i(γd + hγdhT)αβFdc = Hαβc (2.20)

and

Hαβγ̇δγ̇δ̇hδ̇
a′

= i(γa′

+ hγa′

hT)αβ . (2.21)

The (αβĈ) component of the pull-back of H, from (2.13), is

H
αβ bC

= −iE bC
c(γc − hγch

T)αβ , (2.22)

so that the equations for h become

Fab(γ
b + hγbhT)αβ = (γa − hγah

T)αβ

hγ̇
a′

δγ̇ δ̇hδ̇
b′(γb′ − hγb′h

T)αβ = (γa′

+ hγa′

hT)αβ . (2.23)

Defining the antisymmetric matrix

Ma′b′ := δα̇β̇hα̇
a′

h
β̇

b′ (2.24)

and rearranging we get

hγahT = γc((1 −F)−1)c
b(1 + F)b

a

hγa′

hT = −γc′((1 − M)−1)c
b(1 + M)b

a . (2.25)

The solution to these equations can be written as

h = h‖h⊥γ(p+1) , (2.26)

where

γ(p+1) ≡
1

(p + 1)!
εa0···apγ

a0···ap (2.27)
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and where h‖ and h⊥ are spin transformations corresponding to the Lorentz and orthogonal

transformations

La
b = ((1 −F)−1(1 + F))a

b ∈ SO(1, p)

La′
b′ = ((1 − M)−1(1 + M))a′

b′ ∈ SO(9 − p) , (2.28)

which are written in the so-called Cayley parametrisation. They are given by [19]

h‖ =
1√

−det (η + F)
Æ

(
1

2
Fabγ

ab

)

h⊥ =
1√

det (1 + M)
Æ

(
1

2
Ma′b′γa′b′

)
, (2.29)

where the “antisymmetrised exponential” is defined by

Æ(Xabγ
ab) :=

∑

n=0

1

n!
Xa1b1 · · ·Xanbnγa1b1···anbn . (2.30)

It is not hard to show that h can also be expressed as

h =
1√

−sdet (η + K)

∑

n=0

1

2nn!
K

ba1
bb1
· · ·K

ban
bbn

γba1
bb1···ban

bbnγ(p+1) , (2.31)

where γba := Eba
aγa and where the superdeterminant is taken over the subspace spanned

by (Ea, Eα̇). Note that α̇ indices are raised and lowered by means of δ
α̇β̇

and not by η
α̇β̇

where η is the metric induced from the bosonic target space metric,

η
babb

:= Eba
aEbb

bηab . (2.32)

Since Eα
a = 0 this metric is the non-vanishing part of the pull-back of ηab onto the whole

of the tangent space of M̂ .

For future use we note that the gamma-matrix structure of h and (hT )−1 is

h ∼
∑

γ2mγ′2lγ(p+1)

(hT )−1 ∼ −
∑

γ̃2mγ̃′2lγ(p+1) , (2.33)

where γ′ denotes matrices with primed indices and where, in the second line, the tilde

denotes the index structure is (γ)αβ . In general we shall not distinguish the two types of

gamma matrix except where it is useful for clarity.

2.2 Some useful torsion components

We record here some components of the torsion tensor which will be used in the proof of

kappa-symmetry. For completeness we reproduce (2.18):

Tαβ
a = −i(γa + hγahT)αβ . (2.34)
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From the (αβγ̇) component of the K Bianchi identity we find

Tαβγ̇ = −Hαβγ̇

⇒ Tαβγ̇ = iEγ̇
c(γc − hγch

T )αβ

= i(γγ̇ − hγγ̇hT )αβ . (2.35)

Using the (αb)c component of the torsion equation projected along the worldvolume we

find

Tαb
c = ihα

γ(γc)γβhb
β := i(hγchb)α . (2.36)

The other relevant dimension one-half torsion can be found from the (αβ̇γ̇) component of

the K Bianchi identity (2.12); it is

Tαβ̇γ̇ = −iE(β̇
chα

γ(γc)γβhγ̇)
β := −i(hγ(β̇hγ̇))α , (2.37)

where we have used a choice of connection to set T
α[β̇γ̇] = 0. We shall also need the

fermionic derivatives of Fbc and η
β̇γ̇

. The former can be found from the (αbc) component

of the K Bianchi identity together with (2.36),

∇αFbc = 2i(hγdh[b)α(ηc]d + Fc]d) , (2.38)

while the latter can be computed using the definition of ηβ̇γ̇ and the (αβ̇)c component of

the torsion equation, along with (2.37) which allow one to find ∇αE
β̇

c. A short calculation

yields

∇αη
β̇γ̇

= i(1 + η)[β̇
δ̇(hγ|δ̇|hγ̇])α − i(1 − η)[β̇

δ̇(hγγ̇]hδ̇
)α . (2.39)

3. The action

In [2] we presented the Dirac-Born-Infeld and Wess-Zumino terms in the action for a set of

coincident bosonic branes in terms of standard superspace integrals over the supermanifold

M̂0. However, it turns out that the superspace integration formalism of Bernstein and

Leites is much more suitable for this task [12]. Bernstein-Leites integration has been used

previously in a string theory context; see, for example, [20, 21]. The idea is that, instead

of integrating over M̂0, one should integrate over ΠTM̂0 where Π denotes Grassmann

parity flip in the fibres of the tangent bundle TM̂0. That is, one integrates over (x, ξ) and

(dx, dξ) where dξ (dx) are regarded as even (odd) variables. The integrands are pseudo-

differential forms, that is, inhomogeneous forms which can involve arbitrary functions of

the even variables. The integral over dx is given by the standard Berezin rules and therefore

projects out the top form in dx, while the integral over dξ is a formal version of a standard

integral. In the D-brane case it turns out that this part of the integration is Gaussian

and easily computed. As we shall see it gives rise to the contraction of forms with the

matrix commutator of the non-abelian transverse coordinates which appears in the Myers

WZ term.

– 7 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
0

The basic integration formula we shall need is the following: let yr be a set of q real

commuting variables and A a real, symmetric, invertible q × q matrix, and let P (y) be a

polynomial in y, then
∫

dy e−
1

2
yT A−1yP (y) = e

1

2
iAP (y)|y=0 , (3.1)

where iA denotes the differential operator Ars∂r∂s and where we have absorbed the square

root of the determinant of A and factors of π into the normalisation of the integral. In

particular, if A is the unit matrix and P is homogeneous of degree 2n,

P =
1

(2n)!
Pr1...r2nyr1 . . . yr2n , (3.2)

this formula picks out the multi-trace of P , given by
∫

dy e−
1

2
yT yP (y) =

1

2nn!
δr1r2 . . . δr2n−1r2nPr1...r2n

:=
1

2nn!
δr1...r2nPr1...r2n (3.3)

The action will take the form of a Bernstein-Leites integral on M̂0 of a pseudo-differential

form on the same space. However, in the supersymmetric context it is more convenient to

think of the action as a pseudo-form on M̂ , bearing in mind that it is to be pulled back to

M̂0 before evaluation of the integral. If we regard M̂0 as being embedded in M̂ then Ea

and Eα̇ will pull back to ea and eα̇ respectively while Eα pulls back to both of them,

Eα → eaea
α + eα̇eα̇

α on M̂0 . (3.4)

3.1 The DBI term

The Dirac-Born-Infeld pseudo-form is

LDBI = e−Ie−φε(p+1)L0 (3.5)

where ε(p+1) is the bosonic volume form,

ε(p+1) =
1

(p + 1)!
Eap+1 . . . Ea1εa1...ap+1

, (3.6)

and where L0 is the Dirac-Born-Infeld function,

L0 :=
√
−sdet(η + K) . (3.7)

The superdeterminant here is understood to be over the subspace spanned by Eba,

sdet(η + K) = det (ηab + Fab)det−1(δ
α̇β̇

+ η
α̇β̇

) . (3.8)

It is trivial to carry out the integration over dx and dξ; we find
∫

DxDξ D(dx)D(dξ) LDBI =

∫
DxDξ D(ea)D(eα̇) sdet eLDBI

=

∫
dx dξ sdet e e−φ

√
−sdet (η + K) , (3.9)

where the final expression is a standard integral over M̂0. It agrees with the one given

in [2], except for the dilaton factor which was omitted there.
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3.2 The Wess-Zumino term

The Wess-Zumino pseudo-form is given by

LWZ := e−KC (3.10)

where C is the sum of the RR potentials pulled back to M̂ . Notice that we do not have to

project out a particular form component as the integral takes care of this.

When we pull-back LWZ to M̂0 it will give rise to a pseudo-form of the type e−Iω where

ω has (p+1) even indices and 2n odd indices (since any other terms would integrate to zero).

We therefore have to evaluate integrals of the form
∫

DxDξ D(ea)D(eα̇) sdet e e−Iωp+1,2n.

The integrations over ea and eα̇ are easily done and we get

∫
DxDξ D(ea)D(eα̇) sdet e e−Iωp+1,2n = −

∫
dx dξ sdet e εa1...ap+1

(
e

1

2
iδω

)
a1...ap+1

,

(3.11)

where

(iδω0,2n)α̇3...α̇2n := δα̇1α̇2ωα̇1...α̇2n . (3.12)

The Wess-Zumino part of the action is therefore given by

∫
DxDξ D(ea)D(eα̇) sdet eLWZ = −

∫
dx dξ sdet e εa1...ap+1

(
e

1

2
iδe−FC

)
a1...ap+1

.

(3.13)

This is our final expression; it is similar to that given in [2] except that it is written in a

frame basis rather than a coordinate one. As such it is manifestly covariant with respect

to diffeomorphisms of M̂0 whereas it took some work to show that the coordinate version

has this property. A proof of the equivalence of the two is given in [13]. It is easy to

see how the terms involving higher rank forms appear, however. For example, consider a

(p + 1, 2)-form ω of the type appearing in the integrand of (3.13). If we consider ω as a

form on M̂ pulled back from M we have

iδω =
1

(p + 1)!
Eap+1 . . . Ea1δα̇β̇ωa1...ap+1α̇β̇

=
1

(p + 1)!
Eap+1 . . . Ea1M b′c′ub′

buc′
cωa1...ap+1bc . (3.14)

We can think of Ma′b′ as being essentially the Poisson bracket of the transverse coor-

dinates which will become the commutator after quantisation. In this way we see that the

Myers interactions in the WZ term arise very naturally.

4. Kappa-symmetry

One approach to kappa-symmetry for single branes is to note that both the DBI and WZ

terms can be obtained from a closed (p + 2)-form W := (e−FG)p+2, where G denotes the

sum of the RR field strengths, on the super worldvolume M . It is obvious that W = dLWZ,

– 9 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
0

where LWZ = (e−FC)p+1 for a single brane, and it can be shown by cohomological methods

that W is exact, in fact that W = −dLDBI. It therefore follows that

L := LDBI + LWZ (4.1)

is a closed (p + 1)-form on M . One can therefore use “ectoplasmic” integration [22] to

obtain an action which will be invariant under local (i.e. kappa) supersymmetry [23, 24];

this is given by ∫
εm1...mp+1Lm1...mp+1

(x, θ = 0) , (4.2)

where the integral is taken over M0, the bosonic worldvolume of the brane. If we now make

a supersymmetry transformation on M , i.e. an odd diffeomorphism with parameter κα, we

find

δL = iκdL + d(iκL) = d(iκL) . (4.3)

Evaluating (4.3) at θ = 0 and applying it in the variation of (4.2) we get the desired result.

Kappa-symmetry is essentially local supersymmetry on the super worldvolume; the usual

kappa parameter is defined by

κα = καEα
α (4.4)

evaluated at θ = 0.

This construction can be extended to the non-abelian case in a more or less straight-

forward manner. We shall show directly that

−dLDBI ≃ W = e−KG (4.5)

where the modified equals sign indicates equality up to terms that vanish in the Bernstein-

Leites integral. Since the generalisation of the “ectoplasm” construction is straightfor-

ward, establishing (4.5) will be sufficient to prove kappa-symmetry. Note that the kappa-

symmetry parameter in this case will depend on ξ as well as x; in this sense we have

non-abelian kappa-symmetry as well. In fact, we need only consider terms with at least

one factor of Eα since such a factor is needed to contract with κ.

We begin by evaluating dLDBI. We have

dε(p+1) =
1

p!
Eap . . . Ea1T cεca1...ap

≃
1

p!
Eap . . . Ea1

(
1

2
EβEαTαβ

c + EbEαTαb
c

)
εca1...ap , (4.6)

where in this equation, and for the rest of this section, the ≃ sign indicates equality up to

terms that either integrate to zero or which do not have at least one factor of Eα. Making

use of (2.34) and (2.36) we obtain

dε(p+1) ≃ −
i

2
εaE

βEα[(γa(h−1)T + hγa)hT ]αβ + iε(p+1)E
α(hγaha)α , (4.7)

where

εa :=
1

p!
Ebp . . . Eb1εab1...bp (4.8)
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Let us now consider the derivative of the e−I factor. It is easy to see that

dI = Eγ̇Tγ̇

≃
1

2
Eγ̇EβEαTαβγ̇ + Eγ̇Eβ̇EαT

αβ̇γ̇
, (4.9)

where the other terms in T γ̇ have been dropped because they will not contribute to the

integral of iκdLDBI. (We remind the reader that dotted indices are raised or lowered using

δα̇β̇ or δ
α̇β̇

.) Using the expressions for the torsion is (2.35) and (2.37) we find

dI ≃
i

2
Eγ̇EβEα[(γγ̇(h−1)T − hγγ̇)hT ]αβ − iEγ̇Eβ̇Eα(hγγ̇h

β̇
)α . (4.10)

When we integrate over Eα̇ the second term will give rise to a contraction between the

β̇ and γ̇ indices in the last factor, so that we can replace (4.10) by

dI ≃
i

2
Eγ̇EβEα[(γγ̇(h−1)T − hγγ̇)hT ]αβ − iEα(hγβ̇h

β̇
)α . (4.11)

We also need to evaluate the derivative of L0. We have

dL0 ≃
1

2
L0E

α
(
((η + F)−1)cb∇αFbc − ((1 + η)−1)γ̇β̇∇αη

β̇γ̇

)
. (4.12)

With the aid of (2.38) and (2.39) we obtain

((η + F)−1)cb∇αFbc = i
(
−(hγaha)α + (hγahb)αLba

)
, (4.13)

where Lab is given in (2.28), as well as

((1 + η)−1)γ̇β̇∇αη
β̇γ̇

= i
(
(hγβ̇h

β̇
)α − (hγ

β̇
hγ̇Lγ̇β̇)α

)
, (4.14)

where

Lα̇
β̇ := (1 + η)α̇

γ̇((1 − η)−1)γ̇
β̇ . (4.15)

This L is an element of SO(q), where q is the number of fermions. Since

hγah
T = γbLba (4.16)

we have

hγaL
ba = γb(h−1)T . (4.17)

We can also show that

hγα̇Lβ̇α̇ = −γβ̇(h−1)T (4.18)

This can be seen as follows: we have

hγα̇hT = hα̇
a′

hγa′hT

= −hα̇
a′

γb′Lb′a′

= −hα̇
a′

γb′ [(1 + M)(1 − M)−1]b′a′ . (4.19)
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On the other hand

hα̇
a′

Ma′b′ = hα̇
a′

h
β̇a′δ

β̇γ̇hγ̇b′

= ηα̇
β̇h

β̇b′
. (4.20)

It is then a short step to verify (4.18).

Combining all the above results and taking into account the dilaton factor in LDBI we

finally arrive at

dLDBI ≃
1

2
LDBIE

α( − 2∇αφ + i[(hγaha)α + γa(h−1)T ha)α] (4.21)

+i[(hγα̇hα̇)α − (γα̇(h−1)T hα̇)α])

−
i

2
e−φe−IL0E

βEα(εa[(γ
a(h−1)T + hγa)hT ]αβ

+ε(p+1)E
α̇[(γα̇(h−1)T − hγα̇)hT ]αβ) .

We now turn to the Wess-Zumino form. We begin by proving that

e−φe−K
∑

γ(2n) ≃ −LDBIh (4.22)

Consider the terms in the l.h.s. of (4.22) which involve Fm and which have (p + 1)

factors of Ea. If we set n = k + l, where 2m + 2k = p + 1, then we get terms of the form

(
e−φ (−1)m

2mm!
Ea2m . . . Ea1Fa1...a2m

)(
1

(2k)!
Eb2k . . . Eb1γb1...b2k

)(
1

(2l)!
Eα̇2l . . . Eα̇1γα̇1...α̇2l

)
,

(4.23)

where

Fa1...a2m := F[a1a2
. . .Fa2m−1a2m] . (4.24)

Using

Eap+1 . . . Ea1 = −εa1...ap+1ε(p+1) (4.25)

and the duality relation

γa1...a2mγ(p+1) =
(−1)m

(p + 1 − 2m)!
εa1...ap+1γa2m+1...ap+1

(4.26)

we find that the first two factors in (4.23) give

−ε(p+1)
1

2mm!
γa1...a2mFa1...a2mγ(p+1) . (4.27)

When we integrate the third factor in (4.23) over Eα̇, taking into account the presence of

e−I in W , we find

∫
D(Eα̇) e−I 1

(2l)!
Eα̇2l . . . Eα̇1γα̇1...α̇2l

=
1

2ll!
δα̇1α̇2 . . . δα̇2l−1α̇2lγα̇1...α̇2l

=
1

2ll!
γa′

1...a′

2lMa′

1
...a′

2l
, (4.28)
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where

Ma′

1
...a′

2l
:= M[a′

1
a′

2
. . . Ma′

2l−1
a′

2l
] . (4.29)

Putting all this together, summing over all terms of the type of (4.23) and recalling the

series expression for h we indeed find (4.22). When the first index on γ(2n) is a superscript,

a similar calculation yields

e−φe−K
∑

γ̃(2n) ≃ LDBI(h
−1)T . (4.30)

We can now show that the terms involving ∇φ in W sum up to give the corresponding

term in −dLDBI. The relevant term in W is

−e−φe−K
(
Eα1(γ(2n)∇2φ)α − (−1)nEα2(γ(2n)∇1φ)α

)
≃

≃ −e−φe−KEα
(
(γ(2n)∇2φ)α − (−1)n(hγ(2n)∇1φ)α

)
. (4.31)

Using the facts that

(−1)n(γ(2n))α
β = (γ(2n))βα , (4.32)

and ∇α = Eα
α∇α together with (4.22) and (4.30) we indeed see that this term gives

LDBIE
α∇αφ as required.

The remaining terms in W we need to consider, when pulled back to M̂ , have the form

ie−φe−KEα
(
Eγhγ

β + Echc
β + Eγ̇hγ̇

β
)

(γ(2n−1))αβ . (4.33)

The easiest term to deal with is the one involving ha
β. We have

Eaγ(2n−1) = −
1

2
[γa, γ(2n)] . (4.34)

Using this, (4.22) and (4.30), we easily find that these terms give

−
i

2
LDBI((hγaha)α + (γa(h−1)T ha)α) , (4.35)

which is what we needed to show. Now consider the term involving hγ̇
β. We shall compute

this directly. The terms that involve Fm will require 2k factors of Ea from γ(2n−1), where

2m + 2k = p + 1, as well as an odd number, say 2l + 1, of Eα̇ terms. The Ea contribution

is the same as (4.27). The Eα̇ contribution comes from terms of the form

1

(2l + 1)!
Eα̇2l+2 . . . Eα̇1γα̇1...α̇2l+1

hα̇2l+2

β . (4.36)

After integration this gives

1

2ll!
δα̇1...α̇2lγα̇1...α̇2lγ̇δγ̇δ̇h

δ̇
β . (4.37)

Writing γα̇1...α̇2l

δ̇ = 1
2{γα̇1...α̇2l

, γ δ̇}, using the multi-trace to convert the dotted indices to

primed vector indices, and summing all such contributions we find

−
i

2
LDBIE

α
(
(hγα̇hα̇)α − (γα̇(h−1)T hα̇)α

)
(4.38)
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which matches minus the third term in the first line of (4.21). Finally, we need to examine

the terms with EαEβ. Since Eβ pulls back to both eb and eβ̇ there are two contributions;

the former will require an odd number of factors of Ea to be selected from γ(2n−1) while

the latter will require an even number. In both cases the calculations are very similar to

the ones we have already done. The term with an odd number of Eas will give rise to a

total of p of them when combined with the F terms and thus gives rise to a factor εa. It

is not difficult to verify that it gives precisely minus the first term on the second line of

(4.21). The other term is also easily calculated. It gives

i

2
LDBIE

αeα̇
β

(
(γα̇(h−1)T − hγα̇)hT

)
αβ

. (4.39)

This should match minus the second term on the second line of (4.21). This is

i

2
LDBIE

αEβEα̇
(
(γα̇(h−1)T − hγα̇)hT

)
αβ

. (4.40)

In this expression we may replace Eβ by eγ̇eγ̇
β, and then the integral over D(eα̇) forces a

contraction between the γ̇ and α̇ indices. Thus we obtain (4.39).

This completes the proof that iκW ≃ −iκdLDBI and shows that the action
∫

(LDBI +

LWZ) is indeed kappa-symmetric.

5. Discussion

In this paper we have constructed an action for coincident D-branes using the boundary

fermion formalism in the classical approximation. As we argued in our previous papers,

naive quantisation of the fermions after going to the physical gauge leads to the Myers

action (in the bosonic sector) with the integral over the fermions replaced by the sym-

metrised trace. Myers started from the non-abelian generalisation of Born-Infeld [25, 26]

and deduced the form of the scalar terms, in the physical gauge, by demanding T-duality.

He also used T-duality as a guiding principle for his construction of the WZ term. Similar

results were independently derived from matrix model considerations [10, 11]. It is known,

however, that this action and its supersymmetric generalisation proposed here, is not the

full story; see, for example [27, 28]. There have been various attempts to derive these

corrections systematically, including the stable bundle approach [29], direct attempts to

construct non-commutative differential geometry [30 – 33] and others [34 – 39]. It would

certainly be of interest to try to develop the boundary fermion formalism further to see if

contact can be made with these ideas.

The main achievement of the current paper is the supersymmetrisation of our action

for bosonic branes. This was made much easier by the use of Bernstein-Leites integration;

the action given here also has the virtue of being manifestly covariant under all of the

relevant symmetries, with the exception of kappa-symmetry. However, the proof of the

latter, as we have seen, is very similar to the proof of kappa-symmetry for a single brane.

It is interesting to note that the kappa-symmetry parameter depends on the boundary

fermions and thus becomes matrix-valued when they are quantised. This is in accord with

– 14 –
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the ideas of references [40, 41]. Other attempts to supersymmetrise non-abelian brane

dynamics have usually assumed that there is a single kappa-symmetry. These include su-

persymmetric Born-Infeld actions [42, 43], studies of higher-derivative component actions

in ten-dimensional Yang-Mills theory [44], investigations of N = 4,D = 4 higher-order

actions in superspace [45], N = 4,D = 4 terms from N = 1 supergraphs [46] and attempts

to incorporate non-abelian terms in the superembedding formalism [47, 48]. There is a

possible intermediate gauge choice we could make which would be to fix the non-abelian

worldvolume coordinate and kappa-symmetries leaving one kappa-symmetry and one dif-

feomorphism intact; this could then lead to comparisons with the one-kappa approaches to

the problem we have just mentioned.
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